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ABSTRACT 

Let 142 • denote the class of ergodic probability preserving transformations 
which are disjoint from every weakly mixing system. Let fl404; •  be 
the class of multipliers for 14; • i.e. ergodic transformations whose all 

ergodic joinings with any element of W • are also in ]/Y • . Fix an ergodic 
rotation T, a mildly mixing action S of a locally compact second countable 

group G and an ergodic cocycle r for T with values in G. The main 
result of the paper is a sufficient (and also necessary by [LeP] when G is 

countable Abelian and S is Bernoullian) condition for the skew product 
build from T, ~b and S to be an element of A404;• Moreover, the 
self-joinings of such extensions of T are described with an application to 

study semisimple extensions of rotations. 
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0. I n t r o d u c t i o n  

In 1967, H. Furstenberg introduced a concept of disjointness for ergodic transfor- 

mations as a sort of "extreme nonsimilarity" for them [Fhl]. In particular, dis- 

joint transformations are nonisomorphic and even more, they have no nontrivial 

common factors. A nontrivial problem coming from [Full is to describe the class 

142 • of those ergodic transformations that  are disjoint with every weakly mixing 

transformation. It was actually shown there that  W • includes the c lass / )  of 

distal transformations. The fact that  this inclusion is proper was established 

only in 1989 by E. Glasner and B. Weiss [G1W]. Later, E. Glasner introduced 

a class A4(W • of multipliers for 14; • i.e., the class of transformations whose 

all ergodic joinings with any member of )42 • are also in )42 • We then have 

/9 C ~404;• C 142 • Elaborating the ideas from [GlW], E. Glasner demon- 

strated that  7) r M ( W  •  Finally, in a recent paper of F. Parreau and 

the second-named author [LeP] it was shown that  Ad(W • r W • We now 

give some details on the latter result. Let T be an ergodic measure preserv- 

ing transformation of a standard probability space (X, ff~x, #), S = (Sg)geG a 

measure preserving action of a locally compact second countable (1.c.s.c.) group 

G on a standard probability space (Y, ff~y, ~) and r X --+ G a Borel map. 

Throughout the paper we assume that  G is not compact. Define two measure 

preserving transformations Tr and Tr of the product spaces (X x G, # x ha)  

and (X x Y, # x u) respectively by setting 

Tr = (Tx, O(x)g) and Tr = (Tx, Sr 

where ,~a stands for a left Haar measure on G. Note that  Tr is infinite measure 

preserving. The following result was proved in [LeP]: if T C W • G is countable 

Abelian, S Bernoullian, r is ergodic (i.e., Tr is ergodic) and the group e(Tr C "li" 

of L ~ ( X  x G ,#  x s of Tr is uncountable, then Tr E W • and 

for any weakly mixing transformation R whose (reduced) maximal spectral type 

does not vanish on e(Tr there exists an ergodic self-joining ~ of Tr such that  

(Tr x Tr ~) is not disjoint from R. In this connection a question arises: what 

happens if e(Tr is countable? The answer is the main result of the paper (see 
Section 8): 

THEOREM 0.1: Let T be an ergodic transformation with pure point spectrum 

and let G be an amenable 1.c.s.c. group without nontriviM compact normM 

subgroups. Assume that S is a mildly mixing action of G. If  ~: X --+ G is an 

ergodic cocycle o fT  for which e(Tr is countable then Te,s be/ongs to A4(W• 

This finally explains a relationship between Glasner-Weiss' generic techniques 
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and our construction. Actually, we show that  the set of ergodic cocycles with 

e(Tr countable is generic in the Polish space of all measurable maps from X 

to G. Moreover, the same is true for the subspace r of continuous zero mean 

I~-valued cocycles of any irrational rotation (r is furnished with the topology of 

uniform convergence). Taking any horocycle flow as S we then get as a corollary 

an extension of the main result from [Gll]: Tr E 3d(W • \ :D for a generic r 

from as0 (there were some further restrictions on S and the rotation in [Gll]). 

Moreover, we obtain a full description of possible ergodic self-joinings of Tr 

(under the assumptions of Theorem 0.1). This problem was already examined 

in [LMN] for Abelian G and some ergodic cocycles r with the property that  

r x r o R is regular for each transformation R commuting with T. In this paper 

we make a step forward and analyze the general case of G and ergodic r (but 

S is still mildly mixing). The case r x r o R is regular is treated similarly 

to the Abelian one. However, quite surprisingly it turns out that  the case of 

nonregular r x r o R is easily handled due to a special property of its Mackey 

G x G-action. In fact, the relatively independent extension of the graph joining 

#R is the only extension of #R to a self-joining of Tr (see Theorem 7.3 for the 

precise statement). 

Thus, as appears, the description of self-joinings of Tr is very similar to what 

we have in the classical case of compact G (cf. [LeM], [Me]). As an application, 

we extend the main result of [LMN]: 

THEOREM 0.2: Let T, G, S satisfy the assumptions of Theorem 0.1. If  S is 

in addition 2-fold-extra-simple (i.e., for each continuous group automorphism O 

of G, every ergodic joining of S and S o 0 is either the product measure or a 

graph-joining), then Tr is semisimple and the extension Tr -+ T is relatively 

weakly mixing for every ergodic cocycle r X -+ G. 

Notice that  in the present paper we bypass the use of the spectral theory 

which played a crucial role in [LeL], [LeP] and [LMN]. That  enables us to get 

rid of the commutativity assumption on G which was standing in those papers. 

Finally, we would like to note that  even though Tr -+ T seems to be a very 

special case of a general extension (see a theorem of L. Abramov and V. Rokhlin 

[AbR]), however one of our first observations is that  each Rokhlin cocycle is 

cohomologous to a "locally compact" one. In other words, each extension is 

isomorphic as extension to one of the form Tr ~ T. In fact, G can be taken 

as countable and amenable (see Proposition 2.1). 

The outline of the paper is as follows. Section 1 contains a background on 

nonsingular group actions, joinings and measurable orbit theory. In Section 2 we 
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show that any extension can be given by an amenable countable group action. 

Sections 3-6 are of technical nature. Group self-joinings and their connection 

with type I actions are considered in Section 3. Some specific properties of the 

Mackey actions associated to r x r o R are discussed in Section 4. In Section 5 

we introduce a concept of relatively finite measure preserving extensions and 

investigate their properties. A useful link between some simplices of invariant 

and quasi-invariant measures is discussed in Section 6. The main results of 

the paper are collected in Sections 7-9: the ergodic self-joinings of Tr are 

described in Section 7, the theorem on multipliers for W • is proved in Section 8 

and  semisimplicity of Tr is studied in the final Section 9. 

ACKNOWLEDGEMENT: The first-named author would like to thank N. Coper- 

nicus University for the warm hospitality during his stay in Torufi where a 

significant part of this work was done. We thank the referee of the paper for 

several useful comments and especially for his remark about the possibility to 

drop the assumption of unique ergodicity of S in the main result of the paper. 

1. Nota t ion .  Prel iminar ies  

NONSINGULAR TRANSFORMATIONS AND GROUP ACTIONS. Let (X, flBx,it) be 

a standard probability space. The group of #-nonsingular transformations of X 

will be denoted by Aut(X, #). There exists a natural embedding T ~ UT of 

Aut(X, it) into the unitary group of L2(X, it) given by 

1 /dit o T -1 
UTf(x) = f ( T -  x ) V  -d-p (x), f �9 ne(x ,  it), x �9 X. 

Then Aut(X, it) endowed with the weak operator topology is a Polish group. 

The subgroup Auto (X, it) of it-preserving transformations is closed in Aut (X, it). 

Let G be a 1.c.s.c. group. An ergodic nonsingular action S = (Sg)gea of 

G on (X, fl3x, it) is called of type  I if it is supported by a single orbit of S. 

Otherwise S is called proper ly  ergodic. Given two nonsingular G-actions 

S = (Sg)geG and Q = (Qg)geG on (X, ~ x ,  it) and (Y, fl3y, u) respectively, we 

denote by S x Q (resp. S | Q) the following G- (resp. G x G-) action on the 

product space (X x Y, qSx | !By,it x u): 

( S • 2 1 5  ( S |  g, h E G .  

A properly ergodic action S is called mildly mixing (see [FuW], [SWa]) if for 

any properly ergodic G-action Q, the action S x Q is ergodic. As was shown in 
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[SWa], such an S preserves an equivalent invariant probability measure. More- 

over, a probability preserving S is mildly mixing if and only if for any sequence 

g~ ~ c~ in G and a measurable subset A �9 ~ x  with l im~_~ p(Sg. AAA) = 0, 

we have #(A) = 0 or #(A) = 1. Hence for any noncompact closed subgroup 

H C G, the action S(H) is also mildly mixing. 

For an action S of G, we denote by C(S) the cen t ra l i ze r  of S, i.e., 

C(S) : {T e Aut(X,#)] TSg = SgT for all g �9 G}. 

For a single transformation T, C(T) denotes C({T n [ n E Z}). 

By a cocycle  of a nonsingular transformation T on (X, fSx, #) with values 

in G we mean a measurable map from X to G. The set of all such cocycles is 

denoted by Z 1 (T, G). Endowed with the topology of convergence in measure it 

is a Polish space. Two cocycles r g, E Z I(T, G) are called c o h o m o l o g o u s  if 

r = a(x)r -1 

for some measurable map a: X --+ G at a.a. x C X. 

JOININGS AND DISJOINTNESS. Given two transformations Ti C Auto(Xi,#i) ,  

we denote by J(T1,T2) the set of jo in ings  ofT1 and T2, i.e., the set ofT1 x T2- 

invariant measures ~ on ~ x l  Q ~x~ whose marginal on ~x~ is #i, i = 1, 2. 

The corresponding dynamical system (X1 • X2, fSx1 | ~x~, ~, T1 • T2) is also 

called a joining of T1 and T2. By je (TI, T2) C J(T1, T2) we denote the subset of 

ergodic joinings (it is nonempty whenever T1 and T2 are ergodic). Considering 

three transformations T1, T2 and T3 we define in a similar way J(T1, Te, T3) and 

je  (T1, T2, T3). If J(T1, T2) = {Pl • #2} then T1 and T2 are called d is jo in t  [Ful]. 

This will be denoted by T1 • T2. If T1 = T2 =: T we speak about self-joinings 

of T and use notation J2(T) for J(T1, T2). Given an extension 

( X , ~ x , # , T )  ~ (Y,~y,.,S), 

consider the desintegration of # with respect to u: # = fy  #ydu(y). If now 

E J2(S) then the measure ~ := fy• #y x #y,d~?(y, y') is a self-joining of T. It 

is called the re la t ive ly  i n d e p e n d e n t  e x t e n s i o n  of ~. Let Av stand for the 

diagonal self-joining of S. Assuming that  S is ergodic, the extension T --+ S 

is called re la t ive ly  weak ly  mix ing  if the relatively independent extension of 

Ay  is ergodic. An ergodic transformation T of (X, ~ ,  #) is called s emi s imp le  

[JLM] if for each ~ E J~(T), the extension (T • T, ~) ~ (T, #) is relatively 

weakly mixing. Recall also that  T is 2-fold s imple  [JRu] if every y E J~ (T) is 
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either the product measure # • # or a graph joining, i.e., the joining supported 

by the graph of some R C C(T). 
Given a class A of ergodic transformations, by A4(A) we denote the class 

of mul t ip l i e r s  of .4 [Gll], i.e., the class of transformations whose all ergodic 

joinings with an arbitrary element of .4 give rise to a transformation that  is 

still in .4. Let )4; and 7) stand for the classes of weakly mixing transformations 

and distal transformations respectively, see [Yh2]. Summarizing the results on 

disjointness from [Ful], [G1W], [Gll] and [LeP] we can write 

v M ( w  • w • 

For a detailed account on joinings and related things we refer to [JRu], [Th] and 

[G12]. 

ORBIT THEORY AND COCYCLES. We will now briefly recall basics of the orbit 

theory. The facts we present below can be found in [Sc], [FM], [GS2], IDa2]. 

The reader should be aware that  these facts are not all obvious. 

Assume that  T is an ergodic nonsingular transformation of (X, ~ x ,  #). Let 

7~ stand for the T-orbital equivalence relation. We recall definitions of the full 

group [~] of T~ and its normalizer N[7~]: 

[7~] = {S E Aut(X,#)[ (x, Sx) e Tt for #-a.a. x}, 

g[7~] = {S e Aut(X,#)l  S [ 7 ~ ] S  - 1  : [~r~]}. 

We will also use the notation IT] for [T~]. A measurable map a: 7~ --+ G is called 

a cocycle  of ~ if 

a(x, y)a(y, z) = a(x, z) for all (x, y), (y, z) e 7~. 

Two cocycles ~,/~: ~ -+ G are said to be c o h o m o l o g o u s  (we then write 

a ~ /~) if there exists a measurable map a: X -+ G such that  a (x ,y)  = 

a(x)/~(x, y)a(y) -1 for a.a. (x, y) C ~ .  Two cocycles c~,/~: T~ --+ G are called 

weak ly  equ iva len t  if c~ ~ /3o0 for some 0 E N[T~]. (The cocycle/3o0 is defined 

by/~ o O(x,y) =/3(Ox, Oy).) Given a cocycle ~ of 7~, we set r := c~(Tx, x), 
x E X. It is easy to check that  the map a ~ r is a bijection between the T~- 

cocycles and the T-cocycles. Moreover, (~ ~/~ if and only if Ca is cohomologous 

to  

Recall that  AG denotes a left Haar measure on G. Let us fix a probability 

measure A on G equivalent to Ac. We define the following nonsingular trans- 

formations on (X • G, fBx |  x A): 

T, (x ,g )  = (Tx,r  n (x,g) = (x, gh-1),  h G. 
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The cocycle O is called r e c u r r e n t  (resp. e rgodic)  if Tr is conservative (resp. 

ergodic). Notice that  (Rh)h~G is a G-action commuting with Tr Hence it 

induces a nonsingular G-action We = (Wr on the space (ftr ~ ,  re) 

of Tr components. This space is just (X x G,~,  (# x A) I 5), where 

C ~ x  O ~G denotes the a-algebra of Tr subsets. We is called the 

M a c k e y  ac t ion  (or the a s soc ia t ed  act ion)  of r Since T is ergodic, so is We. 

If there exists a closed subgroup H C G such that  r is cohomologous to an 

ergodic cocycle with values in H, then r is called regular .  The subgroup H 

turns out to be determined by r up to conjugacy and it is always amenable. 

Moreover, H is equal to the stabilizer of a point from ~la" It can be shown that  

r is regular if and only if v~ is supported by a single orbit (i.e., We is of type 

I). Clearly, r is ergodic if and only if We is the trivial action on a singleton. 

Next, if r corresponds to a cocyele a of Tr (i.e., r = r then we will also 

write W~ for We and call a recurrent, regular or ergodic if so is 0. Notice that  

if a is weakly equivalent to/3 and a is recurrent, regular or ergodic, then so is 

/3. Moreover, if a and/3 are weakly equivalent then W~ and W~ are isomorphic. 

A theorem of Golodets and Sinelshchikov states that  conversely, if T is measure 

preserving, a and /3 are both recurrent with W~ and Wfi isomorphic, then a 

and/3 are weakly equivalent [GS2]. 

2. R o k h l i n  ex t ens ions  a n d  local ly  c o m p a c t  g r o u p  ex t ens ions  

Let T be an ergodic measure preserving transformation on a standard proba- 

bility space (Z, ~ z ,  a) and let ~ C ff~z be a factor of T. By a classical theorem 

of Abramov-Rokhlin [AbR], the dynamical system (Z, ~3z, a, :F) can be repre- 

sented in a skew product form as follows: 

(Z, ~z ,  t~) ---- (X, ~Sx, #) | C Y, fBz, ~) and T(x, y) -- (Tx, ~(x)y), 

where T is an ergodic transformation of ( X , ~ x , # )  and ~b: X --+ Aut0(:t,v) 

is a measurable map (sometimes called R o k h l i n  cocycle  of T). In such a 

representation ~ corresponds to ~ x  (or, more precisely to ~ x  | 91y, where 9ly 

stands for the trivial sub-a-algebra of ~ z ) .  

In this paper we mainly study extensions T --+ T of a special form. Namely, 

let S = (Sg)geo be an ergodic measure preserving action of a 1.c.s.c. group G 

on a standard probability space (Y, ff~y, , ) .  Take r E Z 1 (X, G). Then we set 

v) := (Tx, S (x)y) 

and denote this extension by T~,s. The case of compact G was deeply investi- 

gated by a number of authors (see, e.g., the bibliography in [LeL]). It will not 
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be considered in this paper. In case G = Z n or ~ ,  extensions Tr --+ T were 

studied in [An], [Ki], [Ru], [G1W], [Gll], [Ro], etc. Later, a more general case of 

Abelian G was under consideration in [LeL], [LeP], [LNM]. As far as we know, 

non-Abelian G were not studied in this context (except of some simple facts 

from [LeL]). 

We start with an observation that  Tr --4 T is not a 'special' extension. In 

fact, every extension is isomorphic (as an extension) to such a one. 

PROPOSITION 2.1: Let T --+ T be an ergodic extension and let r be the corre- 

sponding Rokhlin cocycle o f T  as above. Then there exist a countable amenable 

group E (it does not depend on r  which acts ergodically on (Y, fBv, v) and a 

measurable cocycle 0: X --+ E such that ~ is cohomologous to r in Auto (Y, v) 

(the natural embedding E C Auto(Y, v) is implicit here). Thus T --+ T is iso- 

morphic to Tr -+ T. 

Proof'. It is easy to see that  Auto (](; ~,) contains a dense countable subgroup E 

which is amenable in the discrete topology. Actually, if v has an atom then (Y, v) 

is measurably isomorphic to a finite cyclic group endowed with Haar measure. 

Therefore Auto (Y, v) is finite and hence amenable. If v is nonatomic then we 

0 can represent (Y, v) as (~)n=l ({ , 1}, A)with A(0)= A(1) = 0.5. Let E2n denote 

the permutation group of {0, 1} n. It acts on (Y, v) permutating the first n co- 

ordinates. Then we have E2 C E4 C �9 -. C Aut0(Y, v). Clearly, the locally finite 

countable (and hence amenable) group E := [.J~--1 E2,, is dense in Auto(Y, v). 

Hence E is an ergodic transformation group. By IDa2, Proposition 1.6], r is 

cohomologous to a cocycle r taking values in E. | 

3. G r o u p  self- joinings 

A closed subgroup H c G • G is called a g roup  self- joining of G if the two 

coordinate projections of H to G are onto. Put  Hi := {g E G I (g, lo)  E H} and 

//2 := {g �9 G] (1G,g) C H}. Then HI and/-/2 are closed normal subgroups of G 

and, moreover, there exists a topological group isomorphism 0 :G/H2 -+ G/H1 

such that  

(3.1) H = {(gl,g2) �9 G 2] ~(g2H~) = giH1}. 

Conversely, given two closed normal subgroups HI , / /2  of G and a topological 

group isomorphism 0 :G/H2  -+ G/H1, by (3.1), we obtain a group self-joining 

H of G. 
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We denote the set of all group self-joinings of G by J2(G). Given H E J2(G), 

we have a natural topological G2-action QH on G/HI: 

QH(gl,g2)gH1 = glgHIO(g2H2) -1 for all g,g~,g2 �9 G. 

Clearly, a left Haar measure AG/H1 is QH-quasi-invariant. Slightly abusing no- 

tation, we will denote the coordinate G-actions given by the subgroups G z {1c} 

and {1G} • G by Q(G • {1G}) and Q({1G} x G) respectively. Notice that these 

actions are transitive. Now we prove a converse to that. 

LEMMA 3.1: Let Q be a nonsingular action of G 2 on a standard probability 
space (Z, ~ z ,  t~) such that the G-actions Q(G • {1G}) and Q({1G} • G) are 
ergodic and of type I. Then there exists H �9 J2 (G) such that Q is isomorphic 

to QH. 

Proo~ Denote the G-actions Q(G x {lc}) and Q({lc} z G) by Q1 and Q2 

respectively. Since Q1 is ergodic and of type I, there exists a closed subgroup 

//1 C G such that Z is measurably isomorphic to the homogeneous space G/H1 

and Q1 is the action by left translations; moreover, ~ is equivalent to a Haar 

measure on G/H1. Denote by No(H1) the normalizer of H1 in G, i.e., 

NG(H1) = {g �9 G I g- lHlg  = H1}. 

Then the quotient group NG(H1)/H1 acts on (G/HI,~) by inverted right 

translations: 

(nil1) �9 (gill) = gHln -1, for all g ~ G and n �9 No(H1). 

Notice that C(Q1) = NG(H1)/H1 (see, for example, IDa1]). Since Q2(G) c 

C(Q1) and Q2 is ergodic and of type I, we conclude that NG(H1)/H1 acts 

transitively on G/H1. It is easy to verify that this happens if and only if H1 

is normal in G. Moreover, Q2 determines an epimorphism 0' of G onto G/H1 
such that 

Q2(g) .g'H1 = g'HIO'(g) -1 for all g,g' E G. 

It remains to set / /2 := Ker0' and H := {(gl,g2) �9 G21 O'(g2) = glH1}. II 

4. Mackey actions for r • r o R 

Let T be an ergodic measure preserving transformation of (X, ~3x, #) and r r C 

ZI(T,G). The associated actions Wc, W e and Wr215 are connected by the 

following duality. 
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L E M M A  4.1: 

(i) We is isomorphic to the restriction of WCxr x {1G}) to the a-algebra 

of Wc x c ( {1a } x G)-invariant subsets, and 

(ii) We is isomorphic to the restriction of Wcxr x G) to the a-algebra 

of Wc x r ( G x {1a } )-invariant subsets. 

Proof: We only need to demonstrate (i). Let 5r C ~ x  | ~ v  and 5r174162 C 

~ x  | ~a | r stand for the a-algebras of Tr and Tr215162 subsets 

respectively. Consider the sub-a-algebra 6 of those subsets A E ~r162 which 

are invariant under all translations along the ' third'  coordinate. It is easy to 

see that  A = A t x G for a subset A t E ~ x  | ~G.  Since A E ~r162 it follows 

that  A t E 5r Thus we obtain a Boolean isomorphism 5r 9 A t ~ A ~ x G E | 

intertwining We(g) with Wcxr 1G) for all g E G. I 

By an immediate use of the lemma we get the following. 

PROPOSITION 4.2: I r e  iS ergodic and R E C(T), then the coordinate G-actions 

WCxr X {1a}) and Wcxr X G) are both ergodic. 

We intend to prove a converse to Proposition 4.2 under an additional assump- 

tion that  R '~ r IT] for all n ~ 0. It is easy to check that  this is equivalent to 

the following: R n ~ T m for all n, m E Z with n 2 + rn 2 ~ 0. In turn, this means 

that  the joint Z2-action generated by R and T is free. 

PROPOSITION 4.3: Let G be amenable and let V be a nonsingular ergodic G 2- 

action. Suppose that the G-actions V(G x {1G}) and V({1G} x G) are both 

ergodic. Then under the above assumption on R there exists an ergodic T- 

cocycle r X -+ G such that V is conjugate to the G2-action associated to the 

product T-cocycle r x r o R. 

Proof: It is convenient to make use of the language of the orbit theory in 

the proof. Let 74 stand for the T-orbit  equivalence relation. By a theorem of 

Golodets-Sinelshchikov [GS1], there exists a recurrent cocycle 

0 / = ~  1 x c~2:74~ G x G 

such that  the associated action W~ is conjugate to V. By Lemma 4.1, the 

Mackey G-action Wal is just the restriction of Wa(G x {1G}) to the a-algebra 

of Wa({1a} x G)-invariant subsets. However, this a-algebra is trivial since 

V({1G} x G) is ergodic. Thus W~ 1 is the trivial action on a singleton. Hence 

a l  is ergodic. In a similar way, a2 is ergodic as well. Then by the uniqueness 
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theorem for ergodic cocycles [GS2], there exists a transformation Q E N[7r such 

that  the cocycles (21 o Q and (22 are cohomologous. By a standard trick in the 

orbit theory (see [GS2], [Dal]) replacing, if necessary, (2 by a weakly equivalent 

cocycle we can assume without loss of generality that  Qn ~t [~] for all nonzero 

n r Z, i.e., Q is outer aperiodic in the sense of [CK]. On the other hand, by 

the assumptions, R is also outer aperiodic. Then the Connes-Krieger outer 

conjugacy theorem [CK] implies that  Q = tLRL  -1 for some transformations 

t r [7~] and L E N[7r Now we have 

(2 z (21 X (22 ~ (21 X (21 0 Q = (21 x (21 o t o (LRL -1) ~ (21 X (21 o (LRL -1) 

= ((21 oL  x (21 o L o R )  oL  -1. 

Denote the cocycle (21 o L by /3. Then (2 is weakly equivalent to /3 x /3 o R. 

Since the isomorphism class of the associated Mackey action is invariant under 

the weak equivalence of the underlying cocycles, the action WZ• of G 2 is 

conjugate to V. It remains to define r X -+ G by setting r :=/3(x, Tx) and 

notice that  

/3 o R(x, Tx)  = r for a.a. x r X. I 

Remark 4.4: Using the same argument one can extend Proposition 4.3 as fol- 

lows. Let V be a nonsingular ergodic G2-action. Then there exists a recurrent 

T-cocycle O: X -+ G such that  WC• is conjugate to V if and only if the 

restriction of V(G • {1c}) to the a-algebra of V ( { l c }  • G)-invariant subsets is 

isomorphic to the restriction of V({1G} • G) to the a-algebra of V(G • { la})-  

invariant subsets. 

5. Ergodic decomposit ion and r.f.m.p, factors 

Let S = (Sg)gea be a Borel action of a 1.c.s.c. group G on a standard Borel 

space (Y, ff~r). Let (2: G x Y -+ N~_ be a Borel map satisfying the following 

cocycle identity, 

(2(g2gl,Y) = (2(g2,SglY)(2(gl,Y) for all y E Y and gl,g2 E a.  

Denote by P the set of S-quasi-invariant probability measures on (Y,~Sy). 

Given u E 7 ), we set 

_td;~ o Sg, , } 
P ~ : =  A E I" ~ l y )  = (2(g,y) at ~-a.e. y for every g E G 

g~ := {~ E Pal S is ergodic with respect to A}. 

and 
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Notice that  T'a can be empty. Suppose this is not the case. Then clearly, T'a is 

convex and Ca is the set of extremal points of Pa. Notice that  Pa  furnished with 

the natural  Borel a-algebra ff~p~ (making the map Pa  9 A ~ A(B) E l~ Borel 

for any B E !13y) is a standard Borel space and $a is a Borel subset of it [GrS]. 

In view of the following lemma, P~ can be interpreted as a Borel 'simplex' of 

nonsingular measures. 

LEMMA 5.1 ([GrS]): Given u E P, fix a Borel variant a~: G x Y --+ ~_ of the 

Radon-Nikodym derivative of (S, u). Then there exists a unique probability 

measure n on s such that 

(5.1) . = f_ 
c~ v 

Moreover, i f  ~ stands for the a-algebra of S-invariant subsets then (s , ~8~, t~) 

is identified naturally with (Y, ~, u r ~). 

For a measure ~, E :P, let ~ be a factor of (Y, ~ y ,  u, S). If S preserves u and 

S is ergodic on ~, then e r ~ = u F ~ for n-a.e, e in (5.1). This 'good projection' 

property no longer holds for an arbitrary S-quasi-invariant measure u. However, 

we will show that  it survives in an important  special 'nonsingular' case. 

Definition 5.2: Given a measure u E P,  a factor ~ (and the extension S -+ S I 

~) is called r e l a t i ve ly  f in i te  m e a s u r e  p r e s e r v i n g  (r.f.m.p.) if the Radon-  

Nikodym derivative dr o So~dr is ~-measurable for all g E G. 

In particular, S --+ S 1 92y is r.f.m.p, if and only if S preserves u. (Recall that  

9~v stands for the trivial sub-a-Mgebra of ~ y . )  Moreover, it is easy to verify 

that  if S -+ S [ ~ is r.f.m.p, and S [ ~ admits an equivalent invariant (finite or 

a-finite) measure, then so does S (it also follows from (5.2) below). 

We can restate Definition 5.2 in an equivalent way. Denote the dynamical 

system (Y,~,u  I ~ , S  I ~[) by (Z, ~ z ,  n, V). Let 7r: Y -+ Z stand for the 

corresponding projection and u =- f z  rzdn(z) be the desintegration of u with 

respect to n. Then 

dr o Sg da o V(g) (Tr(y)) duv(g)~(y) o Sg (y) 
dr (Y) - da du,~(y) 

at u-a.e, y for all g E G. Hence ~ is r.f.m.p, if and only if 

duv(g)~(y) o Sg (y) = 1 at r-a.e, y for all g E G, i.e. 
dv~(y) 

(5.2) UV(g)~(y) o Sg = u~(y) for all g E G. 
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Now we see that  if ~ is r.f.m.p. (with respect to v), then by Lemma 5.1 the 

Radon-Nikodym derivative de o So~de is J-measurable for t~-a.e, e in (5.1) and all 

g �9 G. Suppose in addition that  S I ~ is ergodic. Since v I ~ = fE~ e I ;~d~(e), 

it follows from the uniqueness part of Lemma 5.1 that  e I ~ = v [ ~ for t~-a.e.e. 

Thus we have proved the following. 

PROPOSITION 5.3: Let v �9 P.  I f  ~ is an ergodic r.f.m.p, factor o f (Y ,  ~ y  , v, S), 

then for ~-a.e. e from (5.1), the restriction ore to ~ is equal to v 1 5. 

We will also need the following simple lemma about r.f.m.p, extensions. 

LEMMA 5.4: Let S be an ergodic nonsingular G-action on a standard prob- 

ability space ( t :  fBv, u) and let p be an (S x Id)-quasi-invariant measure on 

(Y  x Z, fBy | fBz). Assume that (Y x Z, ~By | ~Bz, p, S x Id) -+ (Y, ~ y ,  u, S) 

is an r.f.m.p, extension. Then p = v x ~ for a probability measure ~ on fgz.  

Proof: Passing, if necessary, to a dense countable subgroup we may assume 

without loss of generality that  G is countable. Let p = f(hy x pv)dv(y) be the 

desintegration of p with respect to v. It follows from (5.2) that  Psgv = Py a.e. 

in u for all g �9 G. Since S is ergodic and the map Y ~ y ~-+ py is measurable, 

the result follows. | 

Now we give a natural example of r.f.m.p, factors. 

We will need the following nonsingular version of the Abramov-Rokhlin 

theorem on factors (see [Ra]): 

Let V be an ergodic nonsingular action of G on a standard probability space 

(Z, ~ z ,  t~) and let ~ be a factor of V (i.e., a V-invariant sub-a-algebra). Then 

there exist a measure space isomorphism A of (Z, ~ z ,  n) onto a product  measure 

space (X, fBx, #) x (Y, fgy, u), a nonsingular action W of G on (X, fgx,  #) and 

a Borel cocycle 

F: G x X ~ (g, x) ~-~ F(g, x) �9 Aut(Y, ~) 

such that  {A(F)] F e ;~} = {B x YI B e ~ x }  (mod0) and 

AV(g)A -1 (x, y) = (W(g)x ,  F(g, x)y) 

at a.a. (x, y) for all g E G. 

PROPOSITION 5.5: Let V be an ergodic nonsingular action of G on a standard 

probability space (Z, ~ z ,  ~) and let R be a n-preserving transformation from 
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the centralizer C(V). Then the a-algebra ~ of R-invariant sets is an r.f.m.p. 
factor of V. 

Proof." By the nonsingular version of the Abramov-Rokhlin theorem, we may 

assume 

(z, ~ z ,  ~) = (x,  ~ x ,  ~) | (Y, ~Y, ~'), 

v(9) (x ,~)  = ( w ( g ) x , F ( 9 , x ) y ) ,  9 e G, 

where ~ = ~ x  | {0, Y},  W is the restriction of V to ~ and 

F: a x X 9 (g, x) ~ F(g, x) e Aut(Y, u) 

is a Borel cocycle of W. Since ~ is a factor of R as well and R acts as the 

identity on ;~, it follows that  R(x, y) -- (x, Rxy) at a.a. (x, y) for a measurable 

field of nonsingular transformations X 9 x ~ Rx E Aut(Y, u). Moreover, these 

transformations Rz are ergodic for a.a. x as the extension ~ z  --+ ~ yields the 

R-ergodic decomposition. Since R preserves # x u, we conclude immediately 

that  Rx preserves u for # -a .e .x .  Moreover, since 

R-1V(g)R( x, Y) = (W(g)x, R~(g)xr(g, x)Rxy) = V(g)(x, y), 

it follows that  RWI(g)xF(g,x)Rx = F(g,x) at a.a. x for all g E G. Hence 

duo F(9, x) duo F(9 , x) 
du (Y) - du (Rxy) 

at u-a.e, y for #-a.a. x and all g C G. Therefore du o F(g, x)/du is a constant 

u-a.e, and this constant is obviously equal to 1, i.e., F(g, x) preserves u for #-a.e. 

x and all g E G. The latter is equivalent to the r.f.m.p, property of ~ by (5.2). 
| 

Notice that  the above proposition is a natural generalization of the well-known 

fact that  a nonsingular transformation commuting with an ergodic probability 

preserving transformation is itself measure preserving. 

The proposition below will be used in the proof of the main result of the 

paper. Let T be an ergodic nonsingular transformation of (X, ~Sx, #) and R 

a measure preserving transformation of (Z, ~ z ,  ~) such that  T x R is ergodic. 

Let r E Z 1 (T, G). By r | 1 we denote the following cocycle of T z R: 

r o l(x,  ~) = r  (x, ~) ~ x • z .  

Recall that  a probability measure A equivalent to a left Haar measure on G is 

fixed and that  (f~r ~ , ,  ur stands for the space of the Mackey G-action We. 
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Notice that  since T • R is ergodic, the Mackey action Wr174 is well defined on 

its measure space (~r174 ~ , |  Ur174 

PROPOSITION 5.6: Assume that T ,R  and r are as above. Denote by R' the 
restriction of the transformation Id • R • Id �9 Aut0(X x Z x G, # x n x A) to 

the a-algebra of (T x R)r174 dnvariant subsets. Then 

(i) R' �9 C(Wcel  ) and it is a conservative transformation of (f~r174 u0| 

(ii) the natural projection 7r: (ftr174 ur174 --+ (ftr ur intertwining W0| with 

We yields the R'-ergodic decomposition. 

Proof: (i) The transformation Id x R x Id is conservative since it preserves a 

finite measure. Hence R' is conservative (as a factor of a conservative map). 

Clearly, it commutes with Wr174 

(ii) It suffices to notice that  any R'-invariant subset A' is of the form 

{(x,z,g)l (x,g) e A ,z  �9 Z} 

for some subset A C X x G. Clearly, A' is (T x R)r174 if and only if 

A is Tr I 

We deduce from Propositions 5.6 and 5.5 the following. 

COROLLARY 5.7: Under the assumptions of Proposition 5.6, the natural 

projection 7r is r.f.m.p. 

Using Corollary 5.7 and the remark just after Definition 5.2 we obtain the 

following. 

COROLLARY 5.8: Under the assumptions of Proposition 5.6: 

(i) If  We admits an equivalent invariant finite (or a-finite) measure then so 

does Woe1. 
(ii) I f  r is ergodic (and hence We is trivial) then Wr174 preserves ur174 

We note that  the assertion (ii) of Corollary 5.8 was established in [LeP] for 

finite measure preserving T and Abelian G. 

6. R . f . m . p .  e x t e n s i o n s  Tr --+ T and  a s s o c i a t e d  M a c k e y  act ions  

Let S be a Borel action of G on a standard Borel space (Y, ~ y ) .  For an invariant 

sub-a-algebra ~ C !By and a quasi-invariant measure n on ~ we let 

P ( S , ~ ,  ~) := {u C Pl u [ ~ = n and ~ is an r.f.m.p, factor of ( Y , ~ y , u ,  S)}. 
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Given an ergodic nonsingular transformation T of (X, ~ x ,  #) and a cocycle 

r X --+ G of T, we are interested in the simplex P(Tr fBx,#). Let R = 

(Rg)g~G denote the nonsingular G-action on (G, ~ c ,  A) by inverted right trans- 

lations. 

Our next statement is a slight modification and extension of a part of Propo- 

sition 2.1 from [LeP], where G was assumed Abelian and T measure preserving. 

Consider the G-action Id • R • S on the product space 

(X x G x Y, fSx | ~G | ~Y) .  

It obviously commutes with the transformation Tr • Id. Hence their 'joint' 

(Z x G)-action, say V, is well defined on X • G x Y. 

PROPOSITION 6.1: The simplices P(V,~Bx | fBc,# • A), ,O(Tr and 
#(We • S, fBa~, ur are paJrwise a//ine isomorphic. Moreover, irA stands for the 
corresponding anne isomorphism of P(Tr fB x , #) onto #(We • S, ~8~, ur 

then A(# • u) = yr • u for any S-invariant measure u on Y. 

Proof'. Take any probability measure r /on X • G x Y projecting onto # x A 

and let ~ = fx• 5(x,g) x ~(x,g)dp(x)dA(g) be its desintegration. By definition, 

E 7'(V, ~ x  |  # x A) if and only if ~ is V-quasi-invariant and the extensions 

(X x G x Y, r/, (Id x Rg • Sg)geG) --+ (X • G, # x A, (Id • Rg)geG), 

(X • G x Y, r/,Tr x Id) --+ (X • G,p • A,Tr 

are r.f.m.p. By (5.2) this is equivalent to the following two equations on ~?(z,g): 

(6.1) ?~(x,gh -1) = ~(x,g) 0 S h  1, 

(6.2) ~T,(x,g) = Y(x,g) 

at a.e. (x, g) for every h E G. It is a standard fact that  the first equation admits 

a unique solution of the form Y(z,g) = ~ o Sg at a.a. (x, g) for a measurable 

field X ~ x ~ r/~ of probability measures on Y. The second equation now 

means that  qTx* = ~* o Sr We define a measure ~* on X x Y by setting 

rl* := f x  5z • ~*d#(x). By (5.2), q* �9 P(Tr ~ x ,  p). Clearly, the map ~ ~ ~* 

is an affine isomorphism of P(V, ~ x  | ~G, # x A) onto P(Tr ~ z ,  #). 

Consider the Tr decomposition of # • A (see Lemma 5.1): # • A = 

f~,  wdur Then for any 

= f 5(z,g) x q(x,g)d#(x)dA(g) �9 P(V, ~3x | ~G,  # • A), 
J X  xG 
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we have 

~= f~ fx  5(x,g) x ~l(x,9)dw(x,g)dur 
r x G  

with 7/(~,g) satisfying (6.1) and (6.2). It follows from (6.2) that  ~/(~,g) = ~# at 

w-a.a. (x, g) for a probability measure ~/~ on Y and ur Now (6.1) implies 

that  ~/w~(g)~ # = ~/# o S~ -1 at a.e. w for all g E G. Let ~/# be a probability measure 

on ~1r z Y given by ~# = fa~ 5~ x ~#~dur It follows from the construction 

and (5.2) that  the map ~ ~+ ~# is an affine isomorphism of 7)(V, ~3x | # x  A) 

onto 7)(Wr x S, ~3a~, ur 

The second claim of the proposition can be verified now by a straightforward 

calculation. II 

Remark 6.2: Let s C ~3y be an S-invariant sub-a-algebra. Suppose that  for 

some p C 7) (Tr  we have p [ (~3x Q s  = p x ul, where Ul is an 

S-invariant probability on (:1I, s Then by the proof of the second claim of 

Proposition 6.1, A(p) [ ( ~ a ,  | s = ur x ul. 

Remark 6.3 (on functorial properties of * and #) :  Let A be a measure pre- 

serving transformation of a standard probability space (Z, ~3z, t{) such that  the 

product T x A is ergodic. Then the map 

r  1: x x z ~ (z ,z)  ~+ r e G 

is a cocycle of T x A. Next, we can define a Z x G-action V ~ on 

(XxZxGxY, pxnx~xu)  

in a perfect analogy with V. Since A preserves t{, the natural restrictions of 

measures induce the following affine onto maps: 

~rl: P(V' ,?Sx  | fSz | fBG,tt x t{ x ~) --+ P(V,~Bx Q ~Sa,# x ,~), 

7r2: P((T x A)r  X |  x t{) --+ P(Tr and 

7r3: P(Wr x S ,~a ,o , ,Ur174  -+ P ( W ,  • S , ~ a , ,  u,).  

We claim that  they respect the maps �9 and # constructed in the proof of 

Proposition 6.1, i.e., frl(~)* = 7r2(~/*) and 7r1(~) # = 7r3(~ #) for all 

r / r  P (V ' ,  ~ x  | ~ z  @ ~ a ,  # x ,~ x )~). 

We only briefly prove the second formula (the first one is easier and we leave its 

verification to the reader). Take any ~ E P(V', ~SXxZ• # x t{ x A). Then 

(6.3) r /=  [ w' x ,l#~,du,| 
r174 
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Next, desintegrate ur174 with respect to ur as follows: 

= f ~dur  (6.4) ur174 -l(w) 

where T: (f~r174 Ur174 --+ (f~r ur is the natural projection intertwining Wr174 

with We and substitute this into (6.3). By the uniqueness of desintegration, we 

obtain 

~l#~,d~w(w ') : 71"l(?~)w ~ for a.a. w �9 ~r 
-l(w) 

In a similar way, substituting (6.4) into 

_ ~  # i ?7 # (~w' X rlw,d•r174 ) 
~| 

we deduce that 

f # i ~G,d~(w ) = or3(r/#)w for  a.a. w �9 f~r 
-1(~) 

Hence 7r1(7/)~ # = 7r3(~#)~ for a.a. w and we are done. 

7. Lifting of joinings 

We recall that  the definitions of J2(G) and QH for an element H E J2(G) 
were given in Section 3. We also notice that  an (S | S)(H)-invariant measure 

is both S(H1) | Id- and Id @ S(H2)-invariant. In order to prove the main result 

of this section--Theorem 7.3--we need two auxiliary lemmas. 

LEMMA 7.1: Let Si be an ergodic measure preserving G-action on (Y/, ~v~, u~), 
i = 1, 2. Assume that Q is a nonsingular G2-action on a standard proba- 
bility space (Z, 93z, ~) such that the coordinate G-actions Q({1G} • G) and 

Q(G x { la})  are both ergodic. 
(i) If  $2 is mildly mixing and Q({IG} x G) is properly ergodic, then 

{p ~ p((& |  x Q,~z,~)I p [(~v2 |  -- v2 x 

and p r ~ r ~  = .~ }  = {v~ x v2 x ~}.  

(ii) I f  Q({la}  x G) and Q(G x { la})  are both of type I, then 

p E P((S1 | &) x Q, fBz, ~) 

if  and only if there exist H E J2(G) and an (S | S)(H)-invariant measure 

p* on II1 x Y2 such that (up to isomorphism) Q = QH, Z = G/H1, a is 
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equivalent to a left Haar measure )~G/H1 and 

P = f z  p* o (Sl(g) • Id) • 5gHldg(gH1) 

is the desintegration of p relative to a. 

Proof'. (i) Take p E P((S1 | $2) x Q, ~ z ,  ~). Then 

(7.1) dp o (Sl(gl)  x $2(g2) x V(gl ,g2))  (yl,y2, z) - dn o Q(gl,g2) (z) 
dp dn 

for p-a.e. (Yl,Y2, z), and all (gl,g2) E G 2. Assume additionally that  

p r ( ~ , ~  | ~Sz) = v2 x ~ .  

It follows that  the G-action ((S2(g) x Q(1a,g))gca,  p r (fl~Y2 | fl~z)) is ergodic 

since $2 is mildly mixing while Q({1G} • G) is properly ergodic. Now put 

gl = l a  in (7.1) and apply Lemma 5.4 to deduce that  p = v' • (u2 • ~) for a 

measure u' on ~Vl. If we assume in addition that  p r ~vl  = ul, then u' = ul 

and (i) follows. 

(ii) By Lemma 3.1, there exists H �9 J2(G) such that  (up to isomorphism) 

Z = G/H1,  Q = QH and ~ is equivalent to Aa/H1. Let 

: f PgH1 • (~gHld~(pH1) P 
JG /H1 

be the desintegration of p. By (5.2), 

PQ,(gl,g2)gH1 : PgH1 o (Sl(gl) X $2(g2)) 

for a-a.a, gil l  �9 G/H1 and all gl,g2 �9 G. Without loss of generality we may 

assume that  this holds for all g, gl,g2 �9 G. Let p* := PHi. Since QH(G • {1G}) 
is transitive, we obtain that  

(7.2) PglH1 = P* o (Sl(gl) • Id) for all gl �9 G. 

Moreover, p* o (Sl(gl) • $2(g2)) = p* for all (gl,g2) �9 H since H is the Qu-  

stabilizer of the point H1 �9 G/H1.  The converse is also true: every $1 | $2 (H)- 

invariant measure p* gives rise to a measure p �9 7)((S1 | • Q, ~ z ,  a) by (7.2). 
| 

The lemma below was formulated in [LeL] only in the Abelian case but the 

proof in the non-Abelian case remains unchanged. It also follows immediately 
from Proposition 6.1. 
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LEMMA 7.2: Let G be amenable and let r X --~ G be an ergodic cocycle of 

an ergodic measure preserving transformation T of (X,  f~x , #). Assume that 

S is a Borel G-action on (Y, f8y).  Suppose that p is an ergodic Tr 

measure on X • Y whose marginal onto X equals #. Then p = # • ~ for an 

ergodic S-invariant measure ~. 

The following theorem provides a full description for the ergodic self-joinings 

of Tr when T has pure point spectrum and S is mildly mixing. 

THEOREM 7.3: Let T be an ergodic measure preserving transformation of  the 

space (X, ~ x ,  #) with pure point spectrum and let ~ E J~ (T). Assume that 

S is a mildly mixing measure preserving action of G on (Y, f~y, u). Assume, 

moreover, that a cocycle r X -4 G is ergodic, f f  the cocycle 

r 1 6 2  x • x ~ (xl ,x2)  ~ (r  r c G 2 

of ( X x X ,  fg x | fg x , ~, T • T)  is regular and cohomologous to an ergodic cocycle 

r with values in some H E J.2(G), then there exists an af!ine isomorphism A of  

the simplex 

J2(Tr := {rl'E J~(Tr r/' [(~Sx |  = ~ }  

onto the simplex of S | S(H)-invariant measures on Y • Y .  More predsely, i f  

r | r  x2) = f ( x l ,  x2)r x2) f (TXl ,  Tx2) -1 r/-a.e. 

for a measurable function f: X 2 -4 G 2, we define a map A: (X  x y )2  -4 X 2 x y2  

by setting 

A(x l ,Y l ,X2 ,y2)  = (xl,x2, S | S( f ( x l , x2 ) ) ( y l , y2 ) ) .  

Then 7/' o A -1 = ~ x A(~') for a11 rf E J2(Tr 

Otherwise, J2 (Tr ~) consists of only one measure--the relatively indepen- 

dent extension of T]. 

Proof." Consider the first case. It has been studied in [LMN]. Though it was 

assumed that  G is Abelian, this commutativity was not really used there. There- 

fore, we only briefly sketch the idea of the proof. Without loss of generality we 

may assume that  r | r itself takes values in H. Indeed, changing a Rokhlin 

cocycle by a cohomologous one we always obtain an isomorphic extension. Then 

it remains to apply Lemma 7.2 and the first case easily follows. 
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Now we pass to the second case. Let ~1 and s denote the S|  sub- 

a-algebras ~gv | 9Iv and 9Iv | ~ v  of ~ v  | fl3v respectively, where 9Iv stands 

for the trivial a-algebra on Y. Since T has pure point spectrum, r/is supported 

on the graph of a transformation R E C(T),  i.e., ~(A • B) = #(A ~ R-1B)  

for all A,B E ~ x .  Hence we may consider any measure ~/' E J2(Tr as 

a measure on X • Y • Y invariant under Tr215162174 and whose restriction 

to fl3x | s is equal to # • L,, i = 1, 2. We have assumed that  r �9 r is either 

nonregular or r174162  is regular but the corresponding group H ~t J2 (G). Therefore 

this assumption, Proposition 4.2 and Lemma 3.1 imply that  at least one of the 

coordinate actions Wr215162 • { la})  or Wr215162 • G) is not of type I.  

It follows from Remark 6.2 that  the affine isomorphism 

A: P(T,,,oR,S| ~x ,  ~) -~ P(Wr215162 ~x~o. ,  -r162 

has the property that  A(~') ( (flg~• | 1 6 3  = VCxr x ~ for i = 1,2. We can 

now apply Lemma 7.1(i) to conclude that  the set 

{p ~ P(wr215162 x (s o s), ~ •  ~r215 p r (~• o ~) 
= VCxr X v, i = 1,2} 

is a singleton. Hence the set 

Q:={~'c&(Tr [ ( ~ x  | 1 6 3  i = 1,2} 

is a singleton as well. It remains to notice that  the relatively independent 

extension of 7/belongs to Q. | 

Remark 7.4: It is worthwhile to note that  the second case in Theorem 7.3 with 

nonregular r • r (which was not considered in [LMN]) is not vacuous. Actually, 

let T and S be as above and V any nonsingular G2-action such that  the G-actions 

V({1G} • G) and V(G • {1G}) are both ergodic. Suppose that  at least one of 

the latter two actions is properly ergodic. Next, fix a transformation R E C(T) 
such that  the joint Z2-action with generators T and R is free (notice that  such 

a transformation always exists since T has pure point spectrum). Denote by ~/ 

the self-joining of T supported by the graph of R. Then by Proposition 4.3 and 

Theorem 7.3 there exists an ergodic cocycle r C ZI(T, G) such that  J2(Tr ~1) 
is a singleton and the Mackey action associated to the cocycle 0 | r of 

(X x X, ~ x  | ~3x, ~, T x T) is isomorphic to V. 
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8. M u l t i p l i e r s  o f  )42 • 

In this section the actions T, R, V and S considered below are assumed to be 

measure preserving. We need an auxiliary lemma from [LeP]. 

LEMMA 8.1 ([LeP, Proposition 5.1]): Let T and R be ergodic transformations. 
I f  R is weakly mixing and R • R is disjoint from any ergodic self-joining of T, 
then T M({R}I). 

It follows immediately that  in order to prove that  T E M ( W  • it is enough 

to show that  every ergodic self-joining of T is disjoint from 142. 

Let T be an ergodic transformation on (X, fl~x,#) such that  T E W • Let 

r X --+ G be an ergodic cocycle of T and let S be an ergodic action of G on 

(is, fl~y, u). Assume that  V is a weakly mixing transformation on (Z, fl~z, ~). 

We claim that  if e(Tr is countable then Tr _1_ V. To prove this claim we notice 

first of all that  T _1_ V. Then observe that  the cocycle r | 1 E Z I (T  • V, G) is 

ergodic. Indeed, the skew product  extension 

( T x V ) r 2 1 5  

is ergodic if and only if av(e(T~)) = 0 (see [Aa, p. 81]), where av denotes the 

measure of maximal spectral type of V on L2(Z, ~;) 0 C1. It suffices now to 

notice that  a v  is continuous and e(T~) countable. In view of Lemma 7.2, our 

claim follows. Thus we have proved the following. 

PROPOSITION 8.2: If  T, r S are as above and e(Tr is countable, then Tr E 
~V • . 

Now we are ready to prove the main result of the paper, i.e., Theorem 0.1 

stated in Introduction. 

Proof of Theorem 0.1: Let ~ be an ergodic self-joining of Tr Take a weakly 

mixing transformation V of a standard probability space (Z, ~ z ,  a). Consider 

a joining ~' E Je(Tr162 projecting onto ~. In view of Lemma 8.1, to 

prove the theorem it is enough to show that  ~' = ~? x a. 

Since T has pure point spectrum, the projection of ~/onto X x X is supported 

by the graph of a transformation R E C(T). Hence we can consider ~ and ~ as 

measures on X x Y x Y and X x Y x Y x Z invariant under the transformations 

Tr215162174 and Tr215162174 x V respectively. Since T and V are disjoint, the 

projection of ~1 onto X x Z is # x ~. Moreover, R I :-- R x Id E C(T x V) and 

we can rewrite Tr215162174 x V as (T x V)r215162174 Thus ~' belongs 

to the simplex 

(8.1) P((T X V)r174215162174 S| , ~ X  | ~3Z, ].t X g). 
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Moreover, by Proposition 8.2, 

(8.2) 
r/ I ( ~ x  | '~z | fBy | 9Iy) = # x n x t, 

r/ [ ( ~ x  | ~Bz | 91z | fBz) = # x n x ~,. 

and 

Let Wcxr and W(q~|162174 act on their measure spaces (ft, fl3a,p) and 

(fl', flBn,, p') respectively. By Proposition 6.1, the simplex (8.1) is affine isomor- 

phic (via A) to the nonsingular simplex 

(8.3) P(w(r174215162174 x (s | s), ~a, ,p ') .  

Furthermore, in view of (8.2) and Remark 6.2, 

A(. ' )  I (~3~, O ~ y  | 9~y) : p' x v 

h ( . ' )  I ( ~ a ,  O 9%- G ~ y )  = p' x v. 
(8.4) 

and 

It follows from Proposition 4.2 and the fact that  r | 1 is ergodic (see the proof 

of Proposition 8.2) that  the G-actions 

Wr174215174 • {1G}) and Wr174162174 X G) 

are ergodic. If at least one of them is properly ergodic, then by Lemma 7.10), 

there is only one measure satisfying (8.4) and belonging to the simplex (8.3). 

Hence there is only one measure satisfying (8.2) and belonging to the simplex 

(8.1). Since the measure ~ x ~ satisfies these properties, we conclude that  

7f = 1/ X I;. 
Consider now the case where the transformation groups 

Wr174162174 x {1G}) and Wr174162174 • G) 

are both of type I. By Lemma 7.1(ii), there exist H E J2(G) and a measure p* 

on (Y x Is, fl~y | fl~y) invariant under S | S(H) such that  (up to isomorphism) 

f't' = G/H1, p' ,., ,ka/H1, Wr162174 = QH and 

/f~, p* o (S(g) x Id) x 6ggldp'(ggl). A(~') 

It follows from (8.4) that  the marginals of p* are equal to v. Clearly, 

H D (H1 x {lc})  U ({lo} x H2). 

I f / /1  is nontrivial, then it is noncompact by the assumption on G. Since S is 

mildly mixing, the transformation group S(H1) is also mildly mixing and, in 
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particular, ergodic. Therefore by Lemma 5.4, p* splits into a direct product 

u • ul. Clearly, Ul = u by our observation on the marginals of p*. In a similar 

way, i f / /2  is nontrivial then p* = u • u. Thus in both cases there exists only 

one measure satisfying (8.4) and belonging to the simplex (8.3). Thus we get 

again ~' = r I x n. 

It remains to consider the case where H1 =/-/2 = {la}.  Then the subset of 

measures satisfying (8.4) and belonging to (8.3) does not need to be a singleton. 

(Consider, for instance, the case where H is the diagonal subgroup of G • G. 

Then the measure p' • ~ satisfies the two properties for any self-joining ~ of S.) 

To settle this case consider the natural projection (W, ~ a , ,  P') ~ (ft, ~8a, p) 

intertwining W(r174162174 with WCxr By Proposition 5.6(ii) (the cocycle 

r x r o R plays now the role of r from that  corollary), it yields the ergodic 

decomposition of a transformation 

D E C(W(r174162174 ) = C(QH). 

Since C(QH) is just the center Z(G) of G acting on G by translations, we can 

identify D with an element d C Z(G). Let K := {d n] n C Z}. It is well known 

that  the the quotient map G --+ G / K  yields the ergodic decomposition of D. 

Any monothetic locally compact group is either compact or infinite discrete (and 

hence isomorphic to Z) [Ht{]. Since D is conservative by Proposition 5.6(i), the 

latter is impossible for K.  Hence K is compact and therefore trivial by our 

assumption on G. Thus the natural projection ft' --+ ft is the identity. Hence 

the natural projection of (8.3) onto the simplex P(WcxvoR x (S | S), ~ ,  p) is 

one-to-one. Therefore, so is the natural projection of (8.1) onto 

P(TCxr ~ x  | ~ z ,  # x n) 

(see Remark 6.3). Thus we get again r/' = rl x n. I 

PROPOSITION 8.3: Let G be amenable and let T be an ergodic transformation. 

Assume that there exists R E C(T) \ {TnI n E Z}. Then the subset 

s := {r 6 ZI(T,G)[ r is ergodic and e(Tr = e(T)} 

is generic in Z 1 (T, G). 

Proof: It follows from the proof of Theorem 4.20) from [Dal] that  the subset 

A// := {r E ZI(T,G)I r x r  is ergodic} 
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is a dense G5 in ZI(T ,G) .  Next, if A E e(Tr \ e(T), then by [ALV] there 

exists a nontrivial continuous homomorphism (character) X: G ~ "2 such that  

o r ~ I in Z 1 (T, "2). Since R commutes with T, we obtain X o r o R ~ I as 

well. Therefore, the cocycle (~( x ~) o (r x r o R) is cohomologous to a constant 

( t ,  A) in Z 1 (T, "It x "2). Since the group generated by this constant is not dense 

in "2 x "2, we obtain that  0~ x ~'0 o (r x r o R) is not ergodic. Hence r x r o R 

is not ergodic as well. Thus s DAd and we are done. I 

COROLLARY 8.4: Let G , T  and S be as in Theorem 0.1. Then for a generic 

cocycle r E ZI(T,G) we have T,,s E M(142 • \ I ) .  

Proof: Since T has pure point spectrum, the centralizer C(T)  is nontrivial. 

Moreover, e(T) is countable since for the probability preserving transformations 

the L~-spec t rum equals the L2-spectrum. It now follows from Theorem 0.1 and 

Proposition 8.2 that  Tr E 3d(W• It follows from Lemma 9.1 below that  

the extension Tr ~ T is relatively weakly mixing. Then by [Fh2], Tr is not 

distal. I 

Now we show how to deduce from that  the main results of [Gll]. Let G = I~ 

and S a horocycle flow corresponding to a lattice F in PSL2(IR). Recall that  

S is mixing of all degrees [Ma]. Let (X, ~ ,  p) = ('2, ~3T, Iv)  and T x  = xe 2 ~ ,  

x E "2 ('2 denotes the circle group), for an irrational number c~ E (0, 1). Denote 

by [0 : al ,  a2, . . . ]  the continued fraction expansion of ct. Let (q~)~_>o stand for 

the sequence of denominators of c~, i.e., 

qo = 1, ql = al, qk+l = ak+~qk + qk-1, k >_ 1. 

We define a cocycle r E ZI(T,  II{) by setting r 27tit) = t -0 .5 ,  where 0 < t < 1. 

Ergodicity of r was established, e.g., in [Pa]. We need a stronger result. 

PROPOSITION 8.5: There exists a transformation R E C(T) such that the 

cocycle r x r o R of T is ergodic. 

To prove this proposition we need an auxiliary fact from [LMN] (see the proof 

of Lemma 3 in [LMN]). 

LEMMA 8.6: Given/3 E (0, 1), let Rx  := xe 2~i~, x E T. I f  the sequence ({qn~})n 

has infinitely many accumulation points, then the cocycle r x r o R of T is 

ergodic. 

Proof of Proposition 8.5: Fix a sequence of positive reals en ~ 0. Let ck E 

(0, 1) be a sequence of reals which contains every rational from (0, 1) infinitely 
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many times. Then it is easy to select a sequence of positive integers lk and a 

subsequence (qnk) of (qn) such that  the segments 

[ I k + c k - - ~ k  l k + c k + c k ]  
fk :~  

qnk qnk 

form a nested sequence, i.e., I1 D/2  D . . . .  (Indeed it is suffices to notice that  
the distance between [l+ck-% l+ct~+~] and [t+l+c~-~ t+l+c~+~] tends to zero 

q,~ ' q ~  ~ q n  ' q n  

uniformly in I as n ~ cc for each k.) Take/3 E Nk~__i Ik. Then I{qn~/3} -ckl  < ck 

for all k > 0. Hence the sequence {qn/3} has infinitely many accumulation points. 

Now we apply Lemma 8.6 and the result follows. | 

We also note that  there exist ergodic cocycles r of an irrational rotation T 

such that  r x r o R is not ergodic for any R E C(T) (an example of such a 

cocycle is given in [LMN] for G = Z). 

Remark 8.7: Let us also notice that  using the a.a.c.c.p, method from [KwLR] 

one can construct smooth (even analytic) real valued cocycles r (over irrational 

rotations under some Diophantine restrictions) satisfying the assertion of Propo- 

sition 8.6. Now, by putting a horocycle flow on the fiber we will obtain examples 

of nondistal smooth multipliers of )4; • 

Let ~0 stand for the family of continuous cocycles of T with zero mean. 

Endowed with the topology of uniform convergence ~o is a Polish space. Since 

T is uniquely ergodic, we have 

~o = {f  - f o T 1 f :  T --+ ]R is continuous}. 

By [Ko] (see also [Ru]), r is cohomologous to a cocycle r E 00. Then, of 

course, the set 

{f  + r - f o T I for all continuous f :  T ~ R} 

is dense in (I)o. It is also a subset of ~4. Since the uniform topology is stronger 

than the topology of convergence in measure and A4 is a G~ in ZI(X,  l~), we 

conclude that  (~o A M is a dense G~ in ~o. Thus we have proved an extension 

of the most technically involved statement in [Gll]--Theorem 5.1 (proved there 

under some Diophantine restrictions on ~): 

PROPOSITION 8.8: For any irrational number ~, the subset 

{r �9 Tr is ergodic and e(Tr = e(T)} 

is generic in ~o- 

The corollary below follows from this and Theorem 0.1. 



Vol. 148, 2005 A CLASS OF MULTIPLIERS FOR 142 • 163 

COROLLARY 8.9: For every r from a dense Gs-subset Oleo, the strictly ergodic 
homeomorphism Tr of the compact manifold X x Y is in J~4(W • ) but not in 
73. 

This extends [Gll, Theorem 4.1] where it was assumed additionally that  F is 

maximal and nonarithmetic and a is rather special. 

9. S e m i s i m p l e  e x t e n s i o n s  o f  t r a n s f o r m a t i o n s  w i t h  p u r e  p o in t  

s p e c t r u m  

We first extend an assertion on relative weak mixing from [LeL], where it was 

assumed that  G is Abelian and spectral theory was used in the proof. 

LEMMA 9.1: Let T be a measure preserving transformation and let r X -~ G 

be a cocycle ofT.  Assume that  S is a mildly mixing G-action. If  Tr is ergodic 
then the extension T~,s -~ T is relatively weakly mixing. 

Proof: What  we need in fact to prove is that  the transformation Tr of the 

space (X x Y x Y, fBx | ~ v  | 98y,p x y z v) is ergodic. By Proposition 6.1, 

the measure # x v x v corresponds under an affine map to the measure 

vr x v x v e P(W,p x S x S, "~u,~, re) .  

Suppose first that  We is properly ergodic. Since S x S is mildly mixing, we 

conclude that  v r  v x v is ergodic for We x S x S. Hence # x v x v is ergodic 

for Tr 
Now let Wr be of type I. This means that  the cocycle r is cohomologous to 

an ergodic cocycle with values in a closed subgroup H of G. Without loss of 

generality we may assume that  r itself enjoys this property (changing r with a 

cohomologous cocycle we obtain an isomorphic extension). Since T~,s = Tr 

is ergodic, so is S(H). If H were compact then S(H) and hence S(G) would be 

of type I.  Tha t  contradicts the mild mixing assumption on S. Hence H is not 

compact and therefore S(H) is mildly mixing. Now r is ergodic (as a cocycle 

with values in H) ,  so Wr is trivial and, since (S x S)(H) is ergodic, we are done. 
| 

Definition 9.2: A probability preserving action S of a 1.c.s.c. group G on 

(Y, ~ y ,  v) is called 2 - f o l d - e x t r a - s i m p l e  if for any continuous group automor- 

phism 8: G -~ G, every ergodic joining of S and S o 8 is either the product  v x v 

or a joining supported by the graph of a transformation R E Aut0(Y, ~) such 

that  RS(g)R -1 = S(8(g)) for all g E G. 
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Notice that  a 2-fold simple action S is 2-fold-extra-simple if and only if for 

any continuous group automorphism 0: G -~ G, the G-action S o 0 is either 

isomorphic to S or disjoint from it. Suppose that  the center of G has no compact 

subgroups. If S is simple and prime (in particular, if it has the MSJ property, 

see [JRu, Theorem 3.1]) then S is 2-fold-extra-simple by [JRu, Corollary 4.3]. 

For example, if G = IR, the horocycle flow corresponding to a maximal non- 

arithmetic lattice F C PSL2(I~) and the Chacon flow are 2-fold-extra-simple 

since they have the MSJ property by [Rat] and [JPa] respectively. 

Example 9.3 (simple but not 2-fold-extra-simple transformation): Let K be a 

compact metric group. Suppose that  T has the MSJ property and T and T -1 

are conjugate via a transformation R �9 Aut0(X, #) (see [JRS] for examples of 

such maps). Denote by T~ the T-orbit equivalence relation. It is easy to see 

that  R �9 N[7~] \ [7@ Prom the proof of [Dal, Theorem 4.20) ] we deduce that  

the cocycles r �9 Z 1 (T, K) such that  c~r x c~r o R is ergodic form a dense G5 

subset of ZI(T,K) .  Recall that  ar  z) = r for a.a. x (see Section 1). 

Fix such a r Next, as in the proof of Proposition 8.3 one can check that  

e(Tr = e(T). Since e(Tr and e(r) are equal to the L<spectrum of Tr and T 

respectively and T is weakly mixing, Tr is also weakly mixing. Then by [JRu, 

Theorem 5.4], Tr is simple. We claim that  it is not 2-fold-extra-simple. Indeed, 

assume that  the contrary holds. Since T r 1 6 2  (Tr -1 (these transformations have 

a common factor--T),  there exists a transformation S' �9 Aut0(X x K, # x AK) 

which conjugates Tr and (Tr -1. Then by [GJLR, Theorem 5], there exists 

a transformation S of (X, ~ x , # )  such that  S'(x, k) = (Sx, S2(x, k)) for a.a. 

(x, k) �9 X x K.  (Though it was assumed in [GJLR] that  K is commutative, 

the proof of the cited fact holds for noncommutative groups as well.) Clearly, 

S conjugates T and T -1. Hence 

S R  -1  e C(T) = {Tnl n �9 Z} 

and therefore c~r o S ~ c~r o R. Moreover, by [GJLR, Proposition 7] (Abelian 

case) and [Dal, Theorem 5.3] (general case), there is a group automorphism l 

of K such that  c~r o S ~ l o ar Thus the cocycle l o crr x crr o R is cohomologous 

to 1 o c~r x c~r o S, which is in turn cohomologous to the cocycle 1 o c~r x 1 o c~r 

taking values in the diagonal subgroup of G 2. Hence it is never ergodic. Since 

the ergodicity of a cocycle is invariant under composition with a group auto- 

morphism, it follows that  ar x ar o R is neither ergodic, a contradiction. 

Now we are ready to give a proof of Theorem 0.2 stated in Introduction. 



Vol. 148, 2005 A CLASS OF MULTIPLIERS FOR YY • 165 

Proof of Theorem 0.2: Let ~ be any ergodic self-joining of Tr As in the 

proof of Theorem 7.3, we may consider ~ as an ergodic Tr215162174 

measure on X • Y • Y such that  

(9.1) ~ [ ( ~ x | 1 7 4  and y [ ( ~ 3 x | 1 7 4  

where R is a t ransformation from C(T) .  Suppose first that  the cocycle r • r o R 

is not regular or is regular but cohomologous to an ergodic cocycle with values 

in a closed subgroup H r Y2 (G). Then ~ = # • u • u by Theorem 7.3. It  follows 

from Lemma 9.1 that  the extension 

(9.2) (Tr162174 : ((Tr162174 x u X u) -+ (Tr x u) 

is relatively weakly mixing and we are done. 

In the remaining case we may assume tha t  r x r o R is ergodic itself as a 

cocycle with values in H C Y2(G). By Theorem 7.3, fl : # x p*, where p* is 

an S | S(H)- invar iant  measure. It  follows from (9.1) tha t  the marginals of p* 

are both  equal to u. Arguing as in the proof of Theorem 0.1, we obtain that  

p* = u x u whenever H A ({ lc}  x G) or H N (G x { lc})  is nontrivial. Thus we 

come to the case considered above. 

Finally, let H be the graph of a group automorphism 0: G --+ G. Since S is 

2-fold-extra-simple, either p* = u • u or p* is supported by the graph of some 

u-preserving t ransformation Q such tha t  QS(g)Q -a = S(O(g)) for all g E G. In 

both cases (9.2) is relatively weakly mixing. Summarizing all the cases we see 

that  Tr is semisimple. 

The relative weak mixing of Tr --+ T has been established in Lemma 9.1. 
| 

Notice tha t  if r o R ~ 0 o r for all R E C(T)  and nontrivial group automor-  

phisms 0, then we can replace (relax) the condition of 2-fold-extra-simplicity in 

Theorem 0.2 with the 2-fold-simplicity. 
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